This paper presents a family of generative Linear Programming models that permit to compute the exact Wasserstein Barycenter of a large set of two-dimensional images. Wasserstein Barycenters were recently introduced to mathematically generalize the concept of averaging a set of points, to the concept of averaging a set of clouds of points, such as, for instance, two-dimensional images. In Machine Learning terms, the Wasserstein Barycenter problem is a generative constrained optimization problem, since the values of the decision variables of the optimal solution give a new image that represents the “average” of the input images. Unfortunately, in the recent literature, Linear Programming is repeatedly described as an inefficient method to co...