A prized property of theories of all kinds is that of generality, of applicability or least relevance to a wide range of circumstances and situations. The purpose of this article is to present a pair of distinctions that suggest that three kinds of generality are to be found in mathematics and logics, not only at some particular period but especially in developments that take place over time: ‘omnipresent’ and ‘multipresent’ theories, and ‘ubiquitous’ notions that form dependent parts, or moments, of theories. The category of ‘facets’ is also introduced, primarily to assess the roles of diagrams and notations in these two disciplines. Various consequences are explored, starting with means of developing applied mathematics, and then reconsid...