The major barriers in the commercialization of the fuel cell technology for automotive applications are the cost and durability of the Pt catalyst and the support stability at high potentials. The U.S. Department of Energy (DOE) targets direct hydrogen fuel cell systems for transportation to meet 65% peak-efficiency, 5,000 hour durability with a mass production cost of $40/kW by 2020. Currently in 2015, the system can be operated at peak energy efficiency of 60% for 3,900 hours with cost of $55/kW. To meet these targets, precious metal loadings must be greatly reduced without altering the catalyst stability. The primary objective of this dissertation is to develop highly active and durable hybrid cathode catalysts (HCC) with ultra-low Pt lo...