A popular tool for analyzing product choices of consumers is the well-known conditional logit discrete choice model. Originally publicized by McFadden (1974), this model assumes that the random components of the underlying latent utility functions of the consumers follow independent Gumbel distributions. However, in practice the independence assumption may be violated and a more reasonable model should account for the dependence of the utilities. In this dissertation we use the Gaussian copula with compound symmetric and autoregressive of order one correlation matrices to construct a general multivariate model for the joint distribution of the utilities. The induced correlations on the utilities and the choice probabilities are studied usin...