The exponent of matrix multiplication is the smallest real number ω such that for all ε>0, O(n^(ω+ε)) arithmetic operations suffice to multiply two n×n matrices. The standard algorithm for matrix multiplication shows that ω≤3. Strassen's remarkable result [5] shows that ω≤2.81, and a sequence of further works culminating in the work of Coppersmith and Winograd [4] have improved this upper bound to ω≤2.376 (see [1] for a full history). Most researchers believe that in fact ω=2, but there have been no further improvements in the known upper bounds for the past fifteen years. It is known that several central linear algebra problems (for example, computing determinants, solving systems of equations, inverting matrices, computing LUP decompo...