summary:It is well known that given a Steiner triple system one can define a quasigroup operation $\cdot$ upon its base set by assigning $x \cdot x = x$ for all $x$ and $x \cdot y = z$, where $z$ is the third point in the block containing the pair $\{x,y\}$. The same can be done for Mendelsohn triple systems, where $(x,y)$ is considered to be ordered. But this is not necessarily the case for directed triple systems. However there do exist directed triple systems, which induce a quasigroup under this operation and these are called Latin directed triple systems. The quasigroups associated with Steiner and Mendelsohn triple systems satisfy the flexible law $y \cdot (x \cdot y) = (y \cdot x) \cdot y$ but those associated with Latin directed tr...