summary:Let $L(\theta ,\lambda )$ be the set of limit points of the fractional parts $\lbrace \lambda \theta ^{n}\rbrace $, $n=0,1,2, \dots $, where $\theta $ is a Pisot number and $\lambda \in \mathbb{Q}(\theta )$. Using a description of $L(\theta ,\lambda )$, due to Dubickas, we show that there is a sequence $(\lambda _{n})_{n\ge 0}$ of elements of $\mathbb{Q}(\theta )$ such that $\operatorname{Card}\,(L(\theta ,\lambda _{n}))< \operatorname{Card}\,(L(\theta ,\lambda _{n+1}))$, $\forall $ $n\ge 0$. Also, we prove that the fractional parts of Pisot numbers, with a fixed degree greater than 1, are dense in the unit interval
In this article, we are dealing with -numeration, which is a generalization of numeration in a non-i...
Abstract. Given a number β>1, the beta-transformation T = Tβ is defined for x ∈ [0,1] by Tx: = βx...
The robust stability of fractional linear time invariant continuous-time systems is currently a very...
summary:Let $L(\theta ,\lambda )$ be the set of limit points of the fractional parts $\lbrace \lambd...
summary:Let $L(\theta ,\lambda )$ be the set of limit points of the fractional parts $\lbrace \lambd...
summary:We consider the sequence of fractional parts $\lbrace \xi \alpha ^n\rbrace $, $n=1,2,3,\dots...
Abstract. We consider the sequence of fractional parts {ξαn}, n = 1, 2, 3,..., where α> 1 is a Pi...
summary:We consider the sequence of fractional parts $\lbrace \xi \alpha ^n\rbrace $, $n=1,2,3,\dots...
summary:We consider the sequence of fractional parts $\lbrace \xi \alpha ^n\rbrace $, $n=1,2,3,\dots...
summary:It is well known that every $x\in (0,1]$ can be expanded to an infinite Lüroth series in the...
Thue–Morse sequence has several extremal properties among all non-periodic sequences of the symbols ...
Abstract. Suppose that α> 1 is an algebraic number and ξ> 0 is a real number. We prove that th...
summary:Článek přináší základní pohled na oblast tzv. zlomkového kalkulu, tedy partii matematické an...
summary:Článek přináší základní pohled na oblast tzv. zlomkového kalkulu, tedy partii matematické an...
summary:Článek přináší základní pohled na oblast tzv. zlomkového kalkulu, tedy partii matematické an...
In this article, we are dealing with -numeration, which is a generalization of numeration in a non-i...
Abstract. Given a number β>1, the beta-transformation T = Tβ is defined for x ∈ [0,1] by Tx: = βx...
The robust stability of fractional linear time invariant continuous-time systems is currently a very...
summary:Let $L(\theta ,\lambda )$ be the set of limit points of the fractional parts $\lbrace \lambd...
summary:Let $L(\theta ,\lambda )$ be the set of limit points of the fractional parts $\lbrace \lambd...
summary:We consider the sequence of fractional parts $\lbrace \xi \alpha ^n\rbrace $, $n=1,2,3,\dots...
Abstract. We consider the sequence of fractional parts {ξαn}, n = 1, 2, 3,..., where α> 1 is a Pi...
summary:We consider the sequence of fractional parts $\lbrace \xi \alpha ^n\rbrace $, $n=1,2,3,\dots...
summary:We consider the sequence of fractional parts $\lbrace \xi \alpha ^n\rbrace $, $n=1,2,3,\dots...
summary:It is well known that every $x\in (0,1]$ can be expanded to an infinite Lüroth series in the...
Thue–Morse sequence has several extremal properties among all non-periodic sequences of the symbols ...
Abstract. Suppose that α> 1 is an algebraic number and ξ> 0 is a real number. We prove that th...
summary:Článek přináší základní pohled na oblast tzv. zlomkového kalkulu, tedy partii matematické an...
summary:Článek přináší základní pohled na oblast tzv. zlomkového kalkulu, tedy partii matematické an...
summary:Článek přináší základní pohled na oblast tzv. zlomkového kalkulu, tedy partii matematické an...
In this article, we are dealing with -numeration, which is a generalization of numeration in a non-i...
Abstract. Given a number β>1, the beta-transformation T = Tβ is defined for x ∈ [0,1] by Tx: = βx...
The robust stability of fractional linear time invariant continuous-time systems is currently a very...