summary:We consider local minimizers $u : \Bbb R^2\supset \Omega \to \Bbb R^N$ of variational integrals like $\int_\Omega [(1+|\partial_1 u|^{2})^{p/2}+(1+|\partial_2 u|^{2})^{q/2}]\,dx$ or its degenerate variant $\int_\Omega [|\partial_1 u|^p+|\partial_2 u|^q]\,dx$ with exponents $2\leq p < q < \infty $ which do not fall completely in the category studied in Bildhauer M., Fuchs M., Calc. Var. {\bf 16} (2003), 177--186. We prove interior $C^{1,\alpha}$- respectively $C^{1}$-regularity of $u$ under the condition that $q < 2p$. For decomposable variational integrals of arbitrary order a similar result is established by the way extending the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. {\bf 31} (2006), 349--362
If \Omega is a domain in \mathbb{R}^{2} and if u:\Omega\rightarrow\mathbb{R} loc...
We consider variational problems of splitting-type, i.e. we want to minimize \int_{\Omega}\left[f(\...
summary:We prove some optimal regularity results for minimizers of the integral functional $\int f(x...
summary:We consider local minimizers $u : \Bbb R^2\supset \Omega \to \Bbb R^N$ of variational integr...
We prove a partial regularity result for local minimizers u : \mathbb{R}^{n}\supset\Omeg...
We combine a maximum principle for vector-valued mappings established by D’Ottavio, Leonetti and Mus...
Starting from Giaquinta's counterexample [Gi] we introduce the class of splitting functionals being ...
summary:We prove higher integrability for minimizers of some integrals of the calculus of variations...
We consider local minimizers u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^...
In the calculus of variations one prominent problem is minimizing anisotropic integrals with a (p,q)...
We consider anisotropic variational integrals of (p,q)-growth and prove for the scalar case interior...
We consider local minimizers u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^...
summary:We prove higher integrability for the gradient of bounded minimizers of some variational int...
We consider variational integrals whose energy densities are represented by N-functions h of at leas...
If u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{M} locally minimizes the ...
If \Omega is a domain in \mathbb{R}^{2} and if u:\Omega\rightarrow\mathbb{R} loc...
We consider variational problems of splitting-type, i.e. we want to minimize \int_{\Omega}\left[f(\...
summary:We prove some optimal regularity results for minimizers of the integral functional $\int f(x...
summary:We consider local minimizers $u : \Bbb R^2\supset \Omega \to \Bbb R^N$ of variational integr...
We prove a partial regularity result for local minimizers u : \mathbb{R}^{n}\supset\Omeg...
We combine a maximum principle for vector-valued mappings established by D’Ottavio, Leonetti and Mus...
Starting from Giaquinta's counterexample [Gi] we introduce the class of splitting functionals being ...
summary:We prove higher integrability for minimizers of some integrals of the calculus of variations...
We consider local minimizers u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^...
In the calculus of variations one prominent problem is minimizing anisotropic integrals with a (p,q)...
We consider anisotropic variational integrals of (p,q)-growth and prove for the scalar case interior...
We consider local minimizers u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^...
summary:We prove higher integrability for the gradient of bounded minimizers of some variational int...
We consider variational integrals whose energy densities are represented by N-functions h of at leas...
If u:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{M} locally minimizes the ...
If \Omega is a domain in \mathbb{R}^{2} and if u:\Omega\rightarrow\mathbb{R} loc...
We consider variational problems of splitting-type, i.e. we want to minimize \int_{\Omega}\left[f(\...
summary:We prove some optimal regularity results for minimizers of the integral functional $\int f(x...