summary:We show a general method of construction of non-$\sigma$-porous sets in complete metric spaces. This method enables us to answer several open questions. We prove that each non-$\sigma$-porous Suslin subset of a topologically complete metric space contains a non-$\sigma$-porous closed subset. We show also a sufficient condition, which gives that a certain system of compact sets contains a non-$\sigma$-porous element. Namely, if we denote the space of all compact subsets of a compact metric space $E$ with the Vietoris topology by $\Cal K(E)$, then it is shown that each analytic subset of $\Cal K(E)$ containing all countable compact subsets of $E$ contains necessarily an element, which is a non-$\sigma$-porous subset of $E$. We show se...