We construct quasiconformal mappings in Euclidean spaces by integration of a discontinuous kernel against doubling measures with suitable decay. The differentials of mappings that arise in this way satisfy an isotropic form of the doubling condition. We prove that this isotropic doubling condition is satisfied by the distance functions of certain fractal sets. Finally, we construct an isotropic doubling measure that is not absolutely continuous with respect to the Lebesgue measure
In this paper, the authors compute the coefficient of quasiconformality for monogenic functions in a...
In this paper, the authors compute the coefficient of quasiconformality for monogenic functions in a...
We extend monotone quasiconformal mappings from dimension n to n+1 while preserving both monotonicit...
We construct quasiconformal mappings in Euclidean spaces by integration of a discontinuous kernel ag...
In this thesis we discuss possible ways to give quantitative measurement for two spaces not being qu...
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135677/1/jlms0504.pd
We provide new conditions that ensure that two metric measure spaces are not quasiconformally equiva...
We provide new conditions that ensure that two metric measure spaces are not quasiconformally equiva...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
AbstractWe provide several estimates which involve the distance to L∞ in some function spaces, the c...
22 pagesIn this paper, we give a positive answer for Mc Mullen's open question which addresses a pro...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
22 pagesIn this paper, we give a positive answer for Mc Mullen's open question which addresses a pro...
AbstractThe main result of this paper is the sharp generalized Schwarz–Pick inequality for euclidean...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
In this paper, the authors compute the coefficient of quasiconformality for monogenic functions in a...
In this paper, the authors compute the coefficient of quasiconformality for monogenic functions in a...
We extend monotone quasiconformal mappings from dimension n to n+1 while preserving both monotonicit...
We construct quasiconformal mappings in Euclidean spaces by integration of a discontinuous kernel ag...
In this thesis we discuss possible ways to give quantitative measurement for two spaces not being qu...
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135677/1/jlms0504.pd
We provide new conditions that ensure that two metric measure spaces are not quasiconformally equiva...
We provide new conditions that ensure that two metric measure spaces are not quasiconformally equiva...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
AbstractWe provide several estimates which involve the distance to L∞ in some function spaces, the c...
22 pagesIn this paper, we give a positive answer for Mc Mullen's open question which addresses a pro...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
22 pagesIn this paper, we give a positive answer for Mc Mullen's open question which addresses a pro...
AbstractThe main result of this paper is the sharp generalized Schwarz–Pick inequality for euclidean...
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait...
In this paper, the authors compute the coefficient of quasiconformality for monogenic functions in a...
In this paper, the authors compute the coefficient of quasiconformality for monogenic functions in a...
We extend monotone quasiconformal mappings from dimension n to n+1 while preserving both monotonicit...