The concept of mapping, or transformation of points is very important in the general theory of functions of a complex variable. In this paper transformations will be used to set up correspondences between regions of two complex planes, the z-plane and the w-plane. “Any given correspondence will be unique or one-to-one between points in the two regions if there is just one point in the transformed region corresponding to a given point in the original region and conversely [11, p. 67]” Care must be exercised in the use of the term “mapping” as it is justifiable only when there is a one-to-one correspondence between the two regions. Most books on complex variables include only a short section or a chapter on mapping. The purpose of this paper ...