Discretization is a common technique to handle numerical attributes in data mining, and it divides continuous values into several intervals by defining multiple thresholds. Decision tree learning algorithms, such as C4.5 and random forests, are able to deal with numerical attributes by applying discretization technique and transforming them into nominal attributes based on one impurity-based criterion, such as information gain or Gini gain. However, there is no doubt that a considerable amount of distinct values are located in the same interval after discretization, through which digital information delivered by the original continuous values are lost. In this thesis, we proposed a global discretization method that can keep the information ...