This is the author's accepted manuscript.Combinatorial rigidity theory seeks to describe the rigidity or flexibility of bar-joint frameworks in Rd in terms of the structure of the underlying graph G. The goal of this article is to broaden the foundations of combinatorial rigidity theory by replacing G with an arbitrary representable matroid M. The ideas of rigidity independence and parallel independence, as well as Laman's and Recski's combinatorial characterizations of 2-dimensional rigidity for graphs, can naturally be extended to this wider setting. As we explain, many of these fundamental concepts really depend only on the matroid associated with G (or its Tutte polynomial), and have little to do with the special nature of graphic matro...