Le flot géodésique des métriques plates sur un tore minimise l’entropie polynomiale parmi tous les flots géodésique sur ce tore. On montre ici que cette propriété caractérise les métriques plates en dimension deux.The geodesic flow of the flat metric on a torus is minimizing the polynomial entropy among all geodesic flows on this torus. We prove here that this properties characterises the flat metric on the two torus.nonnonouirechercheInternationa
Presented by the Editorial Board Based on the entropy formula for the Gauss curvature flow introduce...
This paper represents part of a program to understand the behavior of topological entropy for Anosov...
The entropy of a hypersurface is given by the supremum over all F-functionals with varying centers a...
Abstract. The geodesic flow of the flat metric on a torus is minimizing the polynomial entropy among...
We look for metrics on the torus T^2 that minimize the complexity. Since the topological entropy may...
In der vorliegenden Arbeit wird das Verhalten von Geodätischen auf einem zwei-dimensionalen Torus mi...
Abstract Let (T 2 , g) be the two-dimensional Riemannian torus. In this paper we prove that the topo...
Dans ce mémoire, nous étudions l'entropie des systèmes dynamiques différentiables définis sur des va...
The investigation is concerned with a geodesic flow on Riemannian varieties. The bases of the theory...
In this memoir, we describe the interactions between dynamics and analysis on non-compact negatively...
34 pages, 4 figures. In this new version we have improved the organization of the paper and the clar...
Abstract. We consider the geodesic flow of reversible Finsler met-rics on the 2-sphere and the 2-tor...
AbstractLet M be a closed and connected manifold equipped with a C∞ Riemannian metric. Using the geo...
We show the equivalences of several notions of entropy, like a version of the topological entropy of...
On étudie le flot géodésique d une géométrie de Hilbert définie par un ouvert strictement convexe à ...
Presented by the Editorial Board Based on the entropy formula for the Gauss curvature flow introduce...
This paper represents part of a program to understand the behavior of topological entropy for Anosov...
The entropy of a hypersurface is given by the supremum over all F-functionals with varying centers a...
Abstract. The geodesic flow of the flat metric on a torus is minimizing the polynomial entropy among...
We look for metrics on the torus T^2 that minimize the complexity. Since the topological entropy may...
In der vorliegenden Arbeit wird das Verhalten von Geodätischen auf einem zwei-dimensionalen Torus mi...
Abstract Let (T 2 , g) be the two-dimensional Riemannian torus. In this paper we prove that the topo...
Dans ce mémoire, nous étudions l'entropie des systèmes dynamiques différentiables définis sur des va...
The investigation is concerned with a geodesic flow on Riemannian varieties. The bases of the theory...
In this memoir, we describe the interactions between dynamics and analysis on non-compact negatively...
34 pages, 4 figures. In this new version we have improved the organization of the paper and the clar...
Abstract. We consider the geodesic flow of reversible Finsler met-rics on the 2-sphere and the 2-tor...
AbstractLet M be a closed and connected manifold equipped with a C∞ Riemannian metric. Using the geo...
We show the equivalences of several notions of entropy, like a version of the topological entropy of...
On étudie le flot géodésique d une géométrie de Hilbert définie par un ouvert strictement convexe à ...
Presented by the Editorial Board Based on the entropy formula for the Gauss curvature flow introduce...
This paper represents part of a program to understand the behavior of topological entropy for Anosov...
The entropy of a hypersurface is given by the supremum over all F-functionals with varying centers a...