Abstract. The geodesic flow of the flat metric on a torus is minimizing the polynomial entropy among all geodesic flows on this torus. We prove here that this properties characterises the flat metric on the two torus. Résumé. Le flot géodésique des métriques plates sur un tore minimise l’entropie polynomiale parmi tous les flots géodésiques sur ce tore. On montre ici que cette propriéte ́ caractérise les métriques plates en dimension deux
This paper represents part of a program to understand the behavior of topological entropy for Anosov...
On étudie le flot géodésique d une géométrie de Hilbert définie par un ouvert strictement convexe à ...
Abstract. We construct symbolic dynamics on sets of full measure (w.r.t. an ergodic measure of posit...
Le flot géodésique des métriques plates sur un tore minimise l’entropie polynomiale parmi tous les f...
We look for metrics on the torus T^2 that minimize the complexity. Since the topological entropy may...
In der vorliegenden Arbeit wird das Verhalten von Geodätischen auf einem zwei-dimensionalen Torus mi...
Abstract Let (T 2 , g) be the two-dimensional Riemannian torus. In this paper we prove that the topo...
The investigation is concerned with a geodesic flow on Riemannian varieties. The bases of the theory...
Dans ce mémoire, nous étudions l'entropie des systèmes dynamiques différentiables définis sur des va...
Abstract. We consider the geodesic flow of reversible Finsler met-rics on the 2-sphere and the 2-tor...
Abstract. We show that the set of C ∞ riemannian metrics on S2 or RP 2 whose geodesic flow has posit...
In this memoir, we describe the interactions between dynamics and analysis on non-compact negatively...
We show the equivalences of several notions of entropy, like a version of the topological entropy of...
34 pages, 4 figures. In this new version we have improved the organization of the paper and the clar...
AbstractLet M be a closed and connected manifold equipped with a C∞ Riemannian metric. Using the geo...
This paper represents part of a program to understand the behavior of topological entropy for Anosov...
On étudie le flot géodésique d une géométrie de Hilbert définie par un ouvert strictement convexe à ...
Abstract. We construct symbolic dynamics on sets of full measure (w.r.t. an ergodic measure of posit...
Le flot géodésique des métriques plates sur un tore minimise l’entropie polynomiale parmi tous les f...
We look for metrics on the torus T^2 that minimize the complexity. Since the topological entropy may...
In der vorliegenden Arbeit wird das Verhalten von Geodätischen auf einem zwei-dimensionalen Torus mi...
Abstract Let (T 2 , g) be the two-dimensional Riemannian torus. In this paper we prove that the topo...
The investigation is concerned with a geodesic flow on Riemannian varieties. The bases of the theory...
Dans ce mémoire, nous étudions l'entropie des systèmes dynamiques différentiables définis sur des va...
Abstract. We consider the geodesic flow of reversible Finsler met-rics on the 2-sphere and the 2-tor...
Abstract. We show that the set of C ∞ riemannian metrics on S2 or RP 2 whose geodesic flow has posit...
In this memoir, we describe the interactions between dynamics and analysis on non-compact negatively...
We show the equivalences of several notions of entropy, like a version of the topological entropy of...
34 pages, 4 figures. In this new version we have improved the organization of the paper and the clar...
AbstractLet M be a closed and connected manifold equipped with a C∞ Riemannian metric. Using the geo...
This paper represents part of a program to understand the behavior of topological entropy for Anosov...
On étudie le flot géodésique d une géométrie de Hilbert définie par un ouvert strictement convexe à ...
Abstract. We construct symbolic dynamics on sets of full measure (w.r.t. an ergodic measure of posit...