In this brief note describes the trajectory of the fractal models/multifractal F/M by Benoit Mandelbrot. The promise was discovered by the geometry of Mandelbrot covers a broad area of research fields, from meteorology and mathematical physics to the individual and collective behavior in society, besides his contributions to the analysis of the financial crisis in his wonderful essay on «The (mis) Behavior of Markets. A fractal view of Risk, Ruin and Reward» (2004). Mandelbrot’s arguments have revealed significant anomalies in the prevailing paradigms. Is this a new paradigm in Kuhn’s sense as stated by the same Mandelbrot
The purpose of this work is to highlight the epistemological proximity between Nietzsche’s philosoph...
We begin this article, which deals largely with Benoît B. Mandelbrot’s contributions to and influen...
Il s'agit sans doute de la plus connue des fractales dont la particularité est de présenter une vari...
In this brief note describes the trajectory of the fractal models/multifractal F/M by Benoit Mandelb...
In this brief note describes the trajectory of the fractal models / multifractal F / M by Benoit Man...
Posthumous tributes to Benoit Mandelbrot (1924-2010) have highlighted his remarkable influence on th...
Nassim Nicholas Taleb yields the best posthumous tribute to Benoit Mandelbrot to call it: “A Greek a...
Benoit B. Mandelbrot, who advanced the concept of power law scaling as a fundamental property of a b...
En aquest article analitzem la contribució de Benoît Mandelbrot, considerat el pare de la geometria ...
Benoît Mandelbrot died yesterday. Like most of the blogs dealing with applied mathematics, it looks ...
Le modèle classique de la finance (Markowitz, Sharpe, Black, Scholes, Fama) a, dès le début, été rem...
The beautiful image that you see on the cover is a fractal, a recent entrant into the world of mathe...
The term fractal was first coined by the Polish-born, French-American mathe- matician Benoît Mandelb...
The hereto article indicates how multifractals related ideas can contribute to the modelling of the ...
URL: http://www-spht.cea.fr/articles/s05/154International audienceThis is a short review in honor of...
The purpose of this work is to highlight the epistemological proximity between Nietzsche’s philosoph...
We begin this article, which deals largely with Benoît B. Mandelbrot’s contributions to and influen...
Il s'agit sans doute de la plus connue des fractales dont la particularité est de présenter une vari...
In this brief note describes the trajectory of the fractal models/multifractal F/M by Benoit Mandelb...
In this brief note describes the trajectory of the fractal models / multifractal F / M by Benoit Man...
Posthumous tributes to Benoit Mandelbrot (1924-2010) have highlighted his remarkable influence on th...
Nassim Nicholas Taleb yields the best posthumous tribute to Benoit Mandelbrot to call it: “A Greek a...
Benoit B. Mandelbrot, who advanced the concept of power law scaling as a fundamental property of a b...
En aquest article analitzem la contribució de Benoît Mandelbrot, considerat el pare de la geometria ...
Benoît Mandelbrot died yesterday. Like most of the blogs dealing with applied mathematics, it looks ...
Le modèle classique de la finance (Markowitz, Sharpe, Black, Scholes, Fama) a, dès le début, été rem...
The beautiful image that you see on the cover is a fractal, a recent entrant into the world of mathe...
The term fractal was first coined by the Polish-born, French-American mathe- matician Benoît Mandelb...
The hereto article indicates how multifractals related ideas can contribute to the modelling of the ...
URL: http://www-spht.cea.fr/articles/s05/154International audienceThis is a short review in honor of...
The purpose of this work is to highlight the epistemological proximity between Nietzsche’s philosoph...
We begin this article, which deals largely with Benoît B. Mandelbrot’s contributions to and influen...
Il s'agit sans doute de la plus connue des fractales dont la particularité est de présenter une vari...