Siegel disks are domains around fixed points of holomorphic maps in which the maps are locally linearizable (i.e., become a rotation under an appropriate change of coordinates which is analytic in a neighborhood of the origin). The dynamical behavior of the iterates of the map on the boundary of the Siegel disk exhibits strong scaling properties which have been intensively studied in the physical and mathematical literature. In the cases we study, the boundary of the Siegel disk is a Jordan curve containing a critical point of the map (we consider critical maps of different orders), and there exists a natural parametrization which transforms the dynamics on the boundary into a rotation. We compute numerically this parameterization and use m...