The future trajectory of atmospheric CO2 concentration depends on the development of the terrestrial carbon sink, which in turn is influenced by forest dynamics under changing environmental conditions. An in-depth understanding of model sensitivities and uncertainties in non-steady-state conditions is necessary for reliable and robust projections of forest development and under scenarios of global warming and CO2 enrichment. Here, we systematically assessed if a biogeochemical process-based model (3D-CMCC-CNR), which embeds similarities with many other vegetation models, applied in simulating net primary productivity (NPP) and standing woody biomass (SWB), maintained a consistent sensitivity to its 55 input parameters through time, during f...