We give a classification of cellular automata in arbitrary dimensions and on arbitrary subshift spaces from the point of view of symbolic and topological dynamics. A cellular automaton is a continuous, shift-commuting map on a subshift space; these objects were first investigated from a purely mathematical point of view by Hedlund in 1969. In the 1980's, Wolfram categorized one-dimensional cellular automata based on features of their asymptotic behavior which could be seen on a computer screen. Gilman's work in 1987 and 1988 was the first attempt to mathematically formalize these characterizations of Wolfram's, using notions of equicontinuity, expansiveness, and measure-theoretic analogs of each. We introduce a topological classification of...