AbstractWe consider quantum invariants of 3-manifolds associated with arbitrary simple Lie algebras. Using the symmetry principle we show how to decompose the quantum invariant as the product of two invariants, one of them is the invariant corresponding to the projective group. We then show that the projective quantum invariant is always an algebraic integer, if the quantum parameter is a prime root of unity. We also show that the projective quantum invariant of rational homology 3-spheres has a perturbative expansion a la Ohtsuki. The presentation of the theory of quantum 3-manifold invariants is self-contained
This paper provides a topological interpretation for number theoretic properties of quantum invarian...
Dans cette thèse, une famille d'invariants quantiques de 3-variétés est construite par le biais de 6...
Dans cette thèse, une famille d'invariants quantiques de 3-variétés est construite par le biais de 6...
AbstractWe consider quantum invariants of 3-manifolds associated with arbitrary simple Lie algebras....
AbstractFor a Lie algebra g and its representation R, the quantum (g,R) invariant of knots recovers ...
AbstractWe construct power series invariants of rational homology 3-spheres from quantum PSU(n)-inva...
In 2006 Habiro initiated a construction of generating functions for Witten–Reshetikhin–Turaev (WRT) ...
The Reshetikhin-Turaev approach to topological invariants of three-manifolds is generalized to quant...
We review Kohno's definition of 3-manifold invariants coming from the conformal field theory associa...
Abstract. We review Kohno’s definition of 3-manifold invariants coming from the conformal field theo...
AbstractFor a Lie algebra g and its representation R, the quantum (g,R) invariant of knots recovers ...
We prove that the Witten-Reshetikhin-Turaev (WRT) SO(3) invariant of an arbitrary 3-manifold M is al...
AbstractThis paper provides a topological interpretation for number theoretic properties of quantum ...
We review Kohno\u27s definition of 3-manifold invariants coming from the conformal field theory asso...
The general method of Reshetikhin and Turaev is followed to develop topological invariants of closed...
This paper provides a topological interpretation for number theoretic properties of quantum invarian...
Dans cette thèse, une famille d'invariants quantiques de 3-variétés est construite par le biais de 6...
Dans cette thèse, une famille d'invariants quantiques de 3-variétés est construite par le biais de 6...
AbstractWe consider quantum invariants of 3-manifolds associated with arbitrary simple Lie algebras....
AbstractFor a Lie algebra g and its representation R, the quantum (g,R) invariant of knots recovers ...
AbstractWe construct power series invariants of rational homology 3-spheres from quantum PSU(n)-inva...
In 2006 Habiro initiated a construction of generating functions for Witten–Reshetikhin–Turaev (WRT) ...
The Reshetikhin-Turaev approach to topological invariants of three-manifolds is generalized to quant...
We review Kohno's definition of 3-manifold invariants coming from the conformal field theory associa...
Abstract. We review Kohno’s definition of 3-manifold invariants coming from the conformal field theo...
AbstractFor a Lie algebra g and its representation R, the quantum (g,R) invariant of knots recovers ...
We prove that the Witten-Reshetikhin-Turaev (WRT) SO(3) invariant of an arbitrary 3-manifold M is al...
AbstractThis paper provides a topological interpretation for number theoretic properties of quantum ...
We review Kohno\u27s definition of 3-manifold invariants coming from the conformal field theory asso...
The general method of Reshetikhin and Turaev is followed to develop topological invariants of closed...
This paper provides a topological interpretation for number theoretic properties of quantum invarian...
Dans cette thèse, une famille d'invariants quantiques de 3-variétés est construite par le biais de 6...
Dans cette thèse, une famille d'invariants quantiques de 3-variétés est construite par le biais de 6...