AbstractLet X=(M(n, m), ‖·‖), where ‖·‖ fulfills Condition 0.3 and W=M(n, 1)+M(1, m). A formula for a minimal projection from X onto W is given in (E. W. Cheney and W. A. Light, 1985, “Approximation Theory in Tensor Product Spaces,” Lecture Notes in Mathematics, Springer-Verlag, Berlin; E. J. Halton and W. A. Light, 1985, Math. Proc. Cambridge Philos. Soc.97, 127–136; and W. A. Light, 1986, Math. Z.191, 633–643). We will show that this projection is the unique minimal projection (see Theorem 2.1)
Niniejsza rozprawa doktorska poświęcona jest dwóm głównym problemom teorii projekcji minimalnych: zn...
Minimal and co-minimal projections in the space C[0, 1] are studied. We construct a minimal and co-m...
AbstractLet X denote a (real) Banach space and V an n-dimensional subspace. We denote by B=B(X,V) th...
AbstractLet X=(M(n, m), ‖·‖), where ‖·‖ fulfills Condition 0.3 and W=M(n, 1)+M(1, m). A formula for ...
AbstractWe know that not all minimal projections in Lp(1<p<∞) are unique (see [B. Shekhtman, L. Skrz...
AbstractWe will construct a minimal and co-minimal projection from Lp([0,1]n) onto Lp([0,1]n1)+⋯+Lp(...
AbstractThe main objective of this note is to exhibit a simple example of subspaces U⊂Lp(μ) (p≠2) th...
For the James type space XF generated by a sequence of functions F = ffng n2N (see Def.0.1) we pres...
AbstractFor the James-type space XFgenerated by a sequence of functions F={fn}n∈Nwe present a suffic...
We study the norming points and norming functionals of symmetric operators on ...
AbstractLet X be a Banach space and Y a finite-dimensional subspace of X. Let P be a minimal project...
We study the norming points and norming functionals of symmetric operators on Lp spaces for p = 2m o...
AbstractWe construct a minimal projectionP:X→V3, whereX=[1, t, t2, t|t|σ] andV3=[1, t, t2], for allσ...
Let $X$ be a finite-dimensional normed space and let $Y \subseteq X$ be its proper linear subspace. ...
AbstractG. Lewicki (J. Approx. Theory64 (1991), 181-202) studied strongly unique minimal projections...
Niniejsza rozprawa doktorska poświęcona jest dwóm głównym problemom teorii projekcji minimalnych: zn...
Minimal and co-minimal projections in the space C[0, 1] are studied. We construct a minimal and co-m...
AbstractLet X denote a (real) Banach space and V an n-dimensional subspace. We denote by B=B(X,V) th...
AbstractLet X=(M(n, m), ‖·‖), where ‖·‖ fulfills Condition 0.3 and W=M(n, 1)+M(1, m). A formula for ...
AbstractWe know that not all minimal projections in Lp(1<p<∞) are unique (see [B. Shekhtman, L. Skrz...
AbstractWe will construct a minimal and co-minimal projection from Lp([0,1]n) onto Lp([0,1]n1)+⋯+Lp(...
AbstractThe main objective of this note is to exhibit a simple example of subspaces U⊂Lp(μ) (p≠2) th...
For the James type space XF generated by a sequence of functions F = ffng n2N (see Def.0.1) we pres...
AbstractFor the James-type space XFgenerated by a sequence of functions F={fn}n∈Nwe present a suffic...
We study the norming points and norming functionals of symmetric operators on ...
AbstractLet X be a Banach space and Y a finite-dimensional subspace of X. Let P be a minimal project...
We study the norming points and norming functionals of symmetric operators on Lp spaces for p = 2m o...
AbstractWe construct a minimal projectionP:X→V3, whereX=[1, t, t2, t|t|σ] andV3=[1, t, t2], for allσ...
Let $X$ be a finite-dimensional normed space and let $Y \subseteq X$ be its proper linear subspace. ...
AbstractG. Lewicki (J. Approx. Theory64 (1991), 181-202) studied strongly unique minimal projections...
Niniejsza rozprawa doktorska poświęcona jest dwóm głównym problemom teorii projekcji minimalnych: zn...
Minimal and co-minimal projections in the space C[0, 1] are studied. We construct a minimal and co-m...
AbstractLet X denote a (real) Banach space and V an n-dimensional subspace. We denote by B=B(X,V) th...