AbstractWe will construct a minimal and co-minimal projection from Lp([0,1]n) onto Lp([0,1]n1)+⋯+Lp([0,1]nk), where n=n1+⋯+nk (see Theorem 2.9). This is a generalization of a result of Cheney, Halton and Light from (Approximation Theory in Tensor Product Spaces, Lecture Notes in Mathematics, Springer, Berlin, 1985; Math. Proc. Cambridge Philos. Soc. 97 (1985) 127; Math. Z. 191 (1986) 633) where they proved the minimality in the case n=2. We provide also some further generalizations (see Theorems 2.10 and 2.11 (Orlicz spaces) and Theorem 2.8). Also a discrete case (Theorem 2.2) is considered. Our approach differs from methods used in [8,13,20]
Abstract. The condition number of a space, i.e. the least condition number of its bases, is investig...
AbstractWe construct a two-dimensional subspace V ⊂ C(K) such that an interpolating projection on V ...
In this paper we survey some results on minimality of projections with respect to numerical radius. ...
AbstractWe will construct a minimal and co-minimal projection from Lp([0,1]n) onto Lp([0,1]n1)+⋯+Lp(...
Tyt. z nagłówka.Bibliogr. s. 463-464.Dostępny również w formie drukowanej.ABSTRACT: Minimal and co-m...
AbstractLet X=(M(n, m), ‖·‖), where ‖·‖ fulfills Condition 0.3 and W=M(n, 1)+M(1, m). A formula for ...
AbstractLet X be a Banach space and Y a finite-dimensional subspace of X. Let P be a minimal project...
AbstractIn appropriate function space settings, it is proved that the Fourier, Taylor, and Laurent s...
AbstractThe main objective of this note is to exhibit a simple example of subspaces U⊂Lp(μ) (p≠2) th...
AbstractWe construct a minimal projectionP:X→V3, whereX=[1, t, t2, t|t|σ] andV3=[1, t, t2], for allσ...
Niniejsza rozprawa doktorska poświęcona jest dwóm głównym problemom teorii projekcji minimalnych: zn...
AbstractWe know that not all minimal projections in Lp(1<p<∞) are unique (see [B. Shekhtman, L. Skrz...
Let C be the space of real 27r-periodic continuous functions normed with the supremum norm. Let Pn d...
Abstract. A necessary and sufficient condition for existence of a Banach space with a finite dimensi...
AbstractLet Vn = [v1,…, vn] be the n-dimensional space of coordinate functions on a set of points ν̃...
Abstract. The condition number of a space, i.e. the least condition number of its bases, is investig...
AbstractWe construct a two-dimensional subspace V ⊂ C(K) such that an interpolating projection on V ...
In this paper we survey some results on minimality of projections with respect to numerical radius. ...
AbstractWe will construct a minimal and co-minimal projection from Lp([0,1]n) onto Lp([0,1]n1)+⋯+Lp(...
Tyt. z nagłówka.Bibliogr. s. 463-464.Dostępny również w formie drukowanej.ABSTRACT: Minimal and co-m...
AbstractLet X=(M(n, m), ‖·‖), where ‖·‖ fulfills Condition 0.3 and W=M(n, 1)+M(1, m). A formula for ...
AbstractLet X be a Banach space and Y a finite-dimensional subspace of X. Let P be a minimal project...
AbstractIn appropriate function space settings, it is proved that the Fourier, Taylor, and Laurent s...
AbstractThe main objective of this note is to exhibit a simple example of subspaces U⊂Lp(μ) (p≠2) th...
AbstractWe construct a minimal projectionP:X→V3, whereX=[1, t, t2, t|t|σ] andV3=[1, t, t2], for allσ...
Niniejsza rozprawa doktorska poświęcona jest dwóm głównym problemom teorii projekcji minimalnych: zn...
AbstractWe know that not all minimal projections in Lp(1<p<∞) are unique (see [B. Shekhtman, L. Skrz...
Let C be the space of real 27r-periodic continuous functions normed with the supremum norm. Let Pn d...
Abstract. A necessary and sufficient condition for existence of a Banach space with a finite dimensi...
AbstractLet Vn = [v1,…, vn] be the n-dimensional space of coordinate functions on a set of points ν̃...
Abstract. The condition number of a space, i.e. the least condition number of its bases, is investig...
AbstractWe construct a two-dimensional subspace V ⊂ C(K) such that an interpolating projection on V ...
In this paper we survey some results on minimality of projections with respect to numerical radius. ...