AbstractWe present the Lambda Context Calculus. This simple lambda-calculus features variables arranged in a hierarchy of strengths such that substitution of a strong variable does not avoid capture with respect to abstraction by a weaker variable. This allows the calculus to express both capture-avoiding and capturing substitution (instantiation). The reduction rules extend the ‘vanilla’ lambda-calculus in a simple and modular way and preserve the look and feel of a standard lambda-calculus with explicit substitutions.Good properties of the lambda-calculus are preserved. The LamCC is confluent, and a natural injection into the LamCC of the untyped lambda-calculus exists and preserves strong normalisation.We discuss the calculus and its des...