AbstractNonlinear Neumann problems on riemannian manifolds. Let (M, g) be a C∞ compact riemannian manifold of dimension n ⩾ 2 whose boundary B is an (n − 1)-dimensional submanifold and let M = M⧹B be the interior of M. Study of Neumann problems of the form: Δφ +ƒ(φ, x) = 0 in M, (dφdn) + g(φ, y) = 0 on B, where, for every (t, x, y) ϵ R × M × B, ¦ƒ(t, x)¦ and ¦g(t, y)¦ are bounded by C(1 + ¦t¦a) or C exp(¦t¦a). Application to the determination of a conformal metric for which the scalar curvature of M and the mean curvature of B take prescribed values.RésuméSoit (M, g) une variété riemannienne compacte C∞ de dimension n ⩾ 2, d'intérieur M, dont le bord B est une sous-variété de dimension n − 1. Étude de problèmes de Neumann du type: Δφ + ƒ(φ,...
Let Ω be a domain in an n-dimensional Euclidean space Rn, its boundary Γ being a C∞ and compact hype...
AbstractIn this paper we show that noncompactness of the ∂̄-Neumann operator on a smooth, bounded, p...
Cette thèse porte sur une question de géométrie riemannienne motivée par l'étude de la compactificat...
AbstractLet (M,g) be a C∞ compact Riemannian manifold with strictly convex boundary. Let f∈C∞(T★M×R)...
Let (Mn, g) be an n—dimensional compact Riemannian manifold with boundary with n > 2. In this pap...
AbstractThe ∂-Neumann operator on (0,q)-forms (1⩽q⩽n) on a bounded convex domainΩin Cnis compact if ...
Departamento de Matemáticas, Universidad del Valle, Calle 13 No. 100 - 00, Cali, ColombiaLet $(M^...
RésuméSur une variété riemannienne (M,g) de dimension n, nous démontrons que sur un compact K⊂M, les...
AbstractNonlinear Neumann problems on riemannian manifolds. Let (M, g) be a C∞ compact riemannian ma...
Let (Mⁿ, g) be an n – dimensional compact Riemannian manifold with boundary with n ≥ 2. In this pa...
Abstract We prove a priori estimates up to their second order derivatives for solutions to the obsta...
AbstractFor a compact n-dimensional Riemannian manifold (M,g) with boundary i:∂M⊂M, the Dirichlet-to...
RésuméSur une variété riemannienne complète de dimension n⩾3, on étudie le problème de la courbure s...
AbstractIf P′ is a C∞ positive function on a compact riemannian manifold of dimension n ⩾ 3 and metr...
AbstractLet (Vn, g) be a C∞ compact Riemannian manifold without boundary. Given the following change...
Let Ω be a domain in an n-dimensional Euclidean space Rn, its boundary Γ being a C∞ and compact hype...
AbstractIn this paper we show that noncompactness of the ∂̄-Neumann operator on a smooth, bounded, p...
Cette thèse porte sur une question de géométrie riemannienne motivée par l'étude de la compactificat...
AbstractLet (M,g) be a C∞ compact Riemannian manifold with strictly convex boundary. Let f∈C∞(T★M×R)...
Let (Mn, g) be an n—dimensional compact Riemannian manifold with boundary with n > 2. In this pap...
AbstractThe ∂-Neumann operator on (0,q)-forms (1⩽q⩽n) on a bounded convex domainΩin Cnis compact if ...
Departamento de Matemáticas, Universidad del Valle, Calle 13 No. 100 - 00, Cali, ColombiaLet $(M^...
RésuméSur une variété riemannienne (M,g) de dimension n, nous démontrons que sur un compact K⊂M, les...
AbstractNonlinear Neumann problems on riemannian manifolds. Let (M, g) be a C∞ compact riemannian ma...
Let (Mⁿ, g) be an n – dimensional compact Riemannian manifold with boundary with n ≥ 2. In this pa...
Abstract We prove a priori estimates up to their second order derivatives for solutions to the obsta...
AbstractFor a compact n-dimensional Riemannian manifold (M,g) with boundary i:∂M⊂M, the Dirichlet-to...
RésuméSur une variété riemannienne complète de dimension n⩾3, on étudie le problème de la courbure s...
AbstractIf P′ is a C∞ positive function on a compact riemannian manifold of dimension n ⩾ 3 and metr...
AbstractLet (Vn, g) be a C∞ compact Riemannian manifold without boundary. Given the following change...
Let Ω be a domain in an n-dimensional Euclidean space Rn, its boundary Γ being a C∞ and compact hype...
AbstractIn this paper we show that noncompactness of the ∂̄-Neumann operator on a smooth, bounded, p...
Cette thèse porte sur une question de géométrie riemannienne motivée par l'étude de la compactificat...