AbstractLet (M,g) be a C∞ compact Riemannian manifold with strictly convex boundary. Let f∈C∞(T★M×R) and ϕ∈C∞(∂M×R). Under various hypothesis on f and ϕ, using either continuity method, iterative procedure or fixed point argument, combined with C2,α a priori estimates, we solve Monge–Ampère equations, with nonlinear Neumann boundary condition, of the following form:log(det∇iju)=f(x,du;u)inM,∂u∂ν=ϕ(x,u)on∂M
In this paper, we establish the global C2,α and W2,p regularity for the Monge-Ampère equation detD2u...
AbstractLet ϕ be a convex function on a convex domain Ω⊂Rn, n⩾1. The corresponding linearized Monge–...
AbstractGiven a strictly convex, smooth, and bounded domain Ω in Rn we establish the existence of a ...
AbstractLet (Vn, g) be a C∞ compact Riemannian manifold without boundary. Given the following change...
AbstractNonlinear Neumann problems on riemannian manifolds. Let (M, g) be a C∞ compact riemannian ma...
AbstractLet (Vn, g) be a C∞ compact Riemannian manifold. For suitable functions ϑ, we consider the c...
AbstractLet (Vn, g) be a C∞ compact Riemannian manifold. For a suitable function ϑ on Vn, let us con...
RésuméSoit (X, g) une variété hermitienne compacte. Siϕ∈C2(X), soitM(ϕ)=det(δλμ+∇λμϕ). Etude d'équat...
In connection with the question of geodesics in the space of Kähler metrics on a compact Kähler mani...
AbstractOn a compact Riemannian manifold (M,g), we consider the existence and nonexistence of global...
AbstractOn a compact Riemannian manifold (M,g) we consider the parabolic Monge–Ampère equation∂∂tϕ(x...
Abstract. It is well-known that the Dirichlet problem for the Monge-Ampère equation detD2u = µ in a...
RésuméSur une variété riemannienne (M,g) de dimension n, nous démontrons que sur un compact K⊂M, les...
Let (X, ω) be a compact Hermitian manifold of complex dimension n. I shall discuss some recent resu...
Let Ω be a domain in an n-dimensional Euclidean space Rn, its boundary Γ being a C∞ and compact hype...
In this paper, we establish the global C2,α and W2,p regularity for the Monge-Ampère equation detD2u...
AbstractLet ϕ be a convex function on a convex domain Ω⊂Rn, n⩾1. The corresponding linearized Monge–...
AbstractGiven a strictly convex, smooth, and bounded domain Ω in Rn we establish the existence of a ...
AbstractLet (Vn, g) be a C∞ compact Riemannian manifold without boundary. Given the following change...
AbstractNonlinear Neumann problems on riemannian manifolds. Let (M, g) be a C∞ compact riemannian ma...
AbstractLet (Vn, g) be a C∞ compact Riemannian manifold. For suitable functions ϑ, we consider the c...
AbstractLet (Vn, g) be a C∞ compact Riemannian manifold. For a suitable function ϑ on Vn, let us con...
RésuméSoit (X, g) une variété hermitienne compacte. Siϕ∈C2(X), soitM(ϕ)=det(δλμ+∇λμϕ). Etude d'équat...
In connection with the question of geodesics in the space of Kähler metrics on a compact Kähler mani...
AbstractOn a compact Riemannian manifold (M,g), we consider the existence and nonexistence of global...
AbstractOn a compact Riemannian manifold (M,g) we consider the parabolic Monge–Ampère equation∂∂tϕ(x...
Abstract. It is well-known that the Dirichlet problem for the Monge-Ampère equation detD2u = µ in a...
RésuméSur une variété riemannienne (M,g) de dimension n, nous démontrons que sur un compact K⊂M, les...
Let (X, ω) be a compact Hermitian manifold of complex dimension n. I shall discuss some recent resu...
Let Ω be a domain in an n-dimensional Euclidean space Rn, its boundary Γ being a C∞ and compact hype...
In this paper, we establish the global C2,α and W2,p regularity for the Monge-Ampère equation detD2u...
AbstractLet ϕ be a convex function on a convex domain Ω⊂Rn, n⩾1. The corresponding linearized Monge–...
AbstractGiven a strictly convex, smooth, and bounded domain Ω in Rn we establish the existence of a ...