AbstractRazborov and Rudich have proved that, under a widely-believed hypothesis about pseudorandom number generators, there do not exist P/poly-computable Boolean function properties with density greater than 2−poly(n) that exclude P/poly. This famous result is widely regarded as a serious barrier to proving strong lower bounds in circuit complexity theory, because virtually all Boolean function properties used in existing lower bound proofs have the stated complexity and density. In this paper, we show that under the same pseudorandomness hypothesis, there do exist nearly-linear-time-computable Boolean function properties with only slightly lower density (namely, 2−q(n) for a quasi-polynomial function q) that not only exclude P/poly, but ...
We prove several results giving new and stronger connections between learning theory, circuit comple...
We prove several results giving new and stronger connections between learning theory, circuit comple...
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial...
AbstractRazborov and Rudich have proved that, under a widely-believed hypothesis about pseudorandom ...
Existing proofs that deduce BPP=P from circuit lower bounds convert randomized algorithms into deter...
Existing proofs that deduce BPP=P from circuit lower bounds convert randomized algorithms into deter...
Proving that there are problems in $P^{NP}$ that require boolean circuits of super-linear size is a ...
Computational complexity theory and algorithms are two major areas in theoretical computer science. ...
Abstract. We show that circuit lower bound proofs based on the method of random restrictions yield n...
Proving that there are problems in $P^{NP}$ that require boolean circuits of super-linear size is a ...
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial...
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial...
AbstractWe introduce the notion ofnaturalproof. We argue that the known proofs of lower bounds on th...
grantor: University of TorontoUniform complexity classes are typically defined in terms of...
AbstractWe examine the power of Boolean functions with low L1 norms in several settings. In a large ...
We prove several results giving new and stronger connections between learning theory, circuit comple...
We prove several results giving new and stronger connections between learning theory, circuit comple...
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial...
AbstractRazborov and Rudich have proved that, under a widely-believed hypothesis about pseudorandom ...
Existing proofs that deduce BPP=P from circuit lower bounds convert randomized algorithms into deter...
Existing proofs that deduce BPP=P from circuit lower bounds convert randomized algorithms into deter...
Proving that there are problems in $P^{NP}$ that require boolean circuits of super-linear size is a ...
Computational complexity theory and algorithms are two major areas in theoretical computer science. ...
Abstract. We show that circuit lower bound proofs based on the method of random restrictions yield n...
Proving that there are problems in $P^{NP}$ that require boolean circuits of super-linear size is a ...
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial...
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial...
AbstractWe introduce the notion ofnaturalproof. We argue that the known proofs of lower bounds on th...
grantor: University of TorontoUniform complexity classes are typically defined in terms of...
AbstractWe examine the power of Boolean functions with low L1 norms in several settings. In a large ...
We prove several results giving new and stronger connections between learning theory, circuit comple...
We prove several results giving new and stronger connections between learning theory, circuit comple...
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial...