RésuméDenote, forr∈N* andλ⩾0, by E(r, λ) the statement that, for almost allr-tuples (n1, n2, …, nr)∈Nr, there exist divisorsdj|nj(1⩽j⩽r) such that0<log(dj/d1)⩽(logn1)−λ(2⩽j⩽r).In the caser=2, the first author proved that, ifλ*2=log4−1, E(2, λ) holds whenλ<λ*2, but fails whenλ>λ*2. In this paper, we study the case whenr⩾3. We show that there exists a critical pointλ*3=−1+(3/2)log 2 such that E(3, λ) holds whenλ<λ*3, but fails whenλ>λ*3. We also show that forr⩾4, E(r, λ) never holds
For sufficiently large n Ramanujan gave a sufficient condition for the truth Robin’s InEqual-ity X(n...
Résumé. Le critère de Robin spécifie que l’hypothèse de Riemann (RH) est vraie si et seulement ...
AbstractWe prove in a strong form an old conjecture of Erdös to the effect that ∑1⩽i<j⩽T(n)(dj−di)−1...
AbstractIn an article in Astérisque in 1979 Erdős conjectured the existence of a critical value α0∈(...
RésuméLet 1=d1(n)<d2(n)<…<dτ(n)=n be the sequence of all the divisors of the integer n in increasing...
AbstractThe condition Σk<x|Σn<x (χ(n) − z)4Ω(n)n| = o(√logx), where Ω(n) stands for the number of pr...
International audienceIn a seminal paper, Robin proved that the Riemann hypothesis holds if and only...
Let Ek be the set of positive integers having exactly k prime factors. We show that almost all inter...
AbstractLet d(n) denote the number of positive integers dividing the positive integer n. We show tha...
AbstractLet 1=d1(n)<d2(n)<⋯<dτ(n)=n be the sequence of all positive divisors of the integer n in inc...
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46612/1/222_2005_Article_BF01388495.pd
Let n> 1 be a positive integer, and n = pα11 · · · pαrr its prime factorization. A number d | n...
Let ()(N) denote the sum of the exponential divisors of N, that is, divisors of the form plb’... pbr...
AbstractIn a recent paper by Engel and Schneider, it was asked if, for every n ⩾ 1, A ∈ τ<n> implies...
Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) ...
For sufficiently large n Ramanujan gave a sufficient condition for the truth Robin’s InEqual-ity X(n...
Résumé. Le critère de Robin spécifie que l’hypothèse de Riemann (RH) est vraie si et seulement ...
AbstractWe prove in a strong form an old conjecture of Erdös to the effect that ∑1⩽i<j⩽T(n)(dj−di)−1...
AbstractIn an article in Astérisque in 1979 Erdős conjectured the existence of a critical value α0∈(...
RésuméLet 1=d1(n)<d2(n)<…<dτ(n)=n be the sequence of all the divisors of the integer n in increasing...
AbstractThe condition Σk<x|Σn<x (χ(n) − z)4Ω(n)n| = o(√logx), where Ω(n) stands for the number of pr...
International audienceIn a seminal paper, Robin proved that the Riemann hypothesis holds if and only...
Let Ek be the set of positive integers having exactly k prime factors. We show that almost all inter...
AbstractLet d(n) denote the number of positive integers dividing the positive integer n. We show tha...
AbstractLet 1=d1(n)<d2(n)<⋯<dτ(n)=n be the sequence of all positive divisors of the integer n in inc...
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46612/1/222_2005_Article_BF01388495.pd
Let n> 1 be a positive integer, and n = pα11 · · · pαrr its prime factorization. A number d | n...
Let ()(N) denote the sum of the exponential divisors of N, that is, divisors of the form plb’... pbr...
AbstractIn a recent paper by Engel and Schneider, it was asked if, for every n ⩾ 1, A ∈ τ<n> implies...
Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n) ...
For sufficiently large n Ramanujan gave a sufficient condition for the truth Robin’s InEqual-ity X(n...
Résumé. Le critère de Robin spécifie que l’hypothèse de Riemann (RH) est vraie si et seulement ...
AbstractWe prove in a strong form an old conjecture of Erdös to the effect that ∑1⩽i<j⩽T(n)(dj−di)−1...