AbstractIn an article in Astérisque in 1979 Erdős conjectured the existence of a critical value α0∈(1,∞) such that if A(d,α) denotes the density of the integers having a divisor D, D≡1 (mod d), 1<D<exp(dα), then A(d,α)→0 or 1 as d→∞ according as α is less than, or greater than α0. This is proved, and α0 determined
Erdös a conjecturé que, lorsque l'entier n parcourt une suite convenable de densité unité presque ch...
AbstractLet 1=d1(n)<d2(n)<⋯<dτ(n)=n be the sequence of all positive divisors of the integer n in inc...
AbstractThe Euler–Lehmer constants γ(a,q) are defined as the limitslimx→∞(∑n⩽xn≡a(modq)1n−logxq). We...
AbstractIn an article in Astérisque in 1979 Erdős conjectured the existence of a critical value α0∈(...
Denote by P + (n) the largest prime factor of an integer n. One of Erdős-Turán's conjectures asserts...
Since their introduction by Erdős in 1950, covering systems (that is, finite collections of arithmet...
AbstractThe condition Σk<x|Σn<x (χ(n) − z)4Ω(n)n| = o(√logx), where Ω(n) stands for the number of pr...
AbstractIt is conjectured by Erdős, Graham and Spencer that if 1≤a1≤a2≤⋯≤as are integers with ∑i=1s1...
The following theorem of Roth established the first non-trivial case of a 20 year old conjecture of ...
RésuméDenote, forr∈N* andλ⩾0, by E(r, λ) the statement that, for almost allr-tuples (n1, n2, …, nr)∈...
RésuméLet 1=d1(n)<d2(n)<…<dτ(n)=n be the sequence of all the divisors of the integer n in increasing...
P. Erdos conjectura dans les années trente que presque tout entier possède deux diviseurs distincts ...
An upper quasi-density on H (the integers or the non-negative integers) is a real-valued subadditive...
AbstractFor any finitely generated subgroupΓofQ* we compute a formula for the density of the primes ...
The main focus of these lectures is basis extremal problems and inequalities – two sides of the same...
Erdös a conjecturé que, lorsque l'entier n parcourt une suite convenable de densité unité presque ch...
AbstractLet 1=d1(n)<d2(n)<⋯<dτ(n)=n be the sequence of all positive divisors of the integer n in inc...
AbstractThe Euler–Lehmer constants γ(a,q) are defined as the limitslimx→∞(∑n⩽xn≡a(modq)1n−logxq). We...
AbstractIn an article in Astérisque in 1979 Erdős conjectured the existence of a critical value α0∈(...
Denote by P + (n) the largest prime factor of an integer n. One of Erdős-Turán's conjectures asserts...
Since their introduction by Erdős in 1950, covering systems (that is, finite collections of arithmet...
AbstractThe condition Σk<x|Σn<x (χ(n) − z)4Ω(n)n| = o(√logx), where Ω(n) stands for the number of pr...
AbstractIt is conjectured by Erdős, Graham and Spencer that if 1≤a1≤a2≤⋯≤as are integers with ∑i=1s1...
The following theorem of Roth established the first non-trivial case of a 20 year old conjecture of ...
RésuméDenote, forr∈N* andλ⩾0, by E(r, λ) the statement that, for almost allr-tuples (n1, n2, …, nr)∈...
RésuméLet 1=d1(n)<d2(n)<…<dτ(n)=n be the sequence of all the divisors of the integer n in increasing...
P. Erdos conjectura dans les années trente que presque tout entier possède deux diviseurs distincts ...
An upper quasi-density on H (the integers or the non-negative integers) is a real-valued subadditive...
AbstractFor any finitely generated subgroupΓofQ* we compute a formula for the density of the primes ...
The main focus of these lectures is basis extremal problems and inequalities – two sides of the same...
Erdös a conjecturé que, lorsque l'entier n parcourt une suite convenable de densité unité presque ch...
AbstractLet 1=d1(n)<d2(n)<⋯<dτ(n)=n be the sequence of all positive divisors of the integer n in inc...
AbstractThe Euler–Lehmer constants γ(a,q) are defined as the limitslimx→∞(∑n⩽xn≡a(modq)1n−logxq). We...