Les relaxations en problème d’optimisation linéaire jouent un rôle central en inférence du maximum a posteriori (map) dans les champs aléatoires de Markov discrets. Nous étudions ici les avantages offerts par les méthodes de Newton pour résoudre efficacement le problème dual (au sens de Lagrange) d’une reformulation lisse du problème. Nous comparons ces dernières aux méthodes de premier ordre, à la fois en terme de vitesse de convergence et de robustesse au mauvais conditionnement du problème. Nous exposons donc un cadre général pour l’apprentissage non-supervisé basé sur le transport optimal et les régularisations parcimonieuses. Nous exhibons notamment une approche prometteuse pour résoudre le problème de la préimage dans l’acp à noyau. D...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
Cette thèse est consacrée à l’étude de systèmes dynamiques dissipatifs et à la conception d’algorith...
Modern technological advances have prompted massive scale data collection in manymodern fields such ...
Les relaxations en problème d’optimisation linéaire jouent un rôle central en inférence du maximum a...
Numerical optimization and machine learning have had a fruitful relationship, from the perspective o...
Numerical optimization and machine learning have had a fruitful relationship, from the perspective o...
Numerical optimization and machine learning have had a fruitful relationship, from the perspective o...
Numerical optimization and machine learning have had a fruitful relationship, from the perspective o...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
Cette thèse est consacrée à l’étude de systèmes dynamiques dissipatifs et à la conception d’algorith...
Modern technological advances have prompted massive scale data collection in manymodern fields such ...
Les relaxations en problème d’optimisation linéaire jouent un rôle central en inférence du maximum a...
Numerical optimization and machine learning have had a fruitful relationship, from the perspective o...
Numerical optimization and machine learning have had a fruitful relationship, from the perspective o...
Numerical optimization and machine learning have had a fruitful relationship, from the perspective o...
Numerical optimization and machine learning have had a fruitful relationship, from the perspective o...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
International audienceLinear programming relaxations are central to MAP inference in discrete Markov...
Cette thèse est consacrée à l’étude de systèmes dynamiques dissipatifs et à la conception d’algorith...
Modern technological advances have prompted massive scale data collection in manymodern fields such ...