La recherche d'une compactification de l'ensemble des métriques Riemanniennes à singularités coniques sur une surface amène naturellement à l'étude des "surfaces à Courbure Intégrale Bornée au sens d'Alexandrov". Il s'agit d'une géométrie singulière, développée par A. Alexandrov et l'école de Leningrad dans les années 1970, et dont la caractéristique principale est de posséder une notion naturelle de courbure, qui est une mesure. Cette large classe géométrique contient toutes les surfaces "raisonnables" que l'on peut imaginer.Le résultat principal de cette thèse est un théorème de compacité pour des métriques d'Alexandrov sur une surface ; un corollaire immédiat concerne les métriques Riemanniennes à singularités coniques. On décrit dans c...
The study of singular flat spacetimes with polyhedral Cauchy-surfaces is motivated by the quantum gr...
In this paper our interest will be focused on the topological aspects of Rie-mann surfaces. It is sh...
Abstract. This is a talk on interaction of the techniques of positivity and abstract convexity in fu...
If we look for a compactification of the space of Riemannian metrics with conical singularities on a...
We study a class of compact surfaces in R-3 introduced by Alexandrov and generalized by Nirenberg an...
A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fu...
In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance der...
The idea is to demonstrate the beauty and power of Alexandrov geometry by reaching interesting appli...
International audienceIn this note, we prove that on a surface with Alexandrov's curvature bounded b...
In the first part of the dissertation we prove that, under quite general conditions on a cost functi...
We prove in this paper that evry compact Riemann surface carries an euclidean (flat) conformal metri...
The following paper considers Alexandrov’s conjecture, that the ratio of surface area to intrinsic d...
Here I show the compatibility of two definitions of generalized curvature bounds: the lower bound fo...
Nous étudions trois classes d'objets géométriques qui jouent un rôle important en Dynamique Holomorp...
We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let...
The study of singular flat spacetimes with polyhedral Cauchy-surfaces is motivated by the quantum gr...
In this paper our interest will be focused on the topological aspects of Rie-mann surfaces. It is sh...
Abstract. This is a talk on interaction of the techniques of positivity and abstract convexity in fu...
If we look for a compactification of the space of Riemannian metrics with conical singularities on a...
We study a class of compact surfaces in R-3 introduced by Alexandrov and generalized by Nirenberg an...
A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fu...
In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance der...
The idea is to demonstrate the beauty and power of Alexandrov geometry by reaching interesting appli...
International audienceIn this note, we prove that on a surface with Alexandrov's curvature bounded b...
In the first part of the dissertation we prove that, under quite general conditions on a cost functi...
We prove in this paper that evry compact Riemann surface carries an euclidean (flat) conformal metri...
The following paper considers Alexandrov’s conjecture, that the ratio of surface area to intrinsic d...
Here I show the compatibility of two definitions of generalized curvature bounds: the lower bound fo...
Nous étudions trois classes d'objets géométriques qui jouent un rôle important en Dynamique Holomorp...
We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let...
The study of singular flat spacetimes with polyhedral Cauchy-surfaces is motivated by the quantum gr...
In this paper our interest will be focused on the topological aspects of Rie-mann surfaces. It is sh...
Abstract. This is a talk on interaction of the techniques of positivity and abstract convexity in fu...