Nous étudions la propriété RD en terme de décroissance de coefficients matriciels de représentations unitaires. Nous nous concentrons en particulier sur des représentations provenant de l'action des groupes de Lie et de groupes discrets sur un "bord" approprié. Ces actions produisent des rerésentations unitaires à normalisation prés. Nous utilisons des techniques d'analyse harmonique et de théorie ergodique pour amorcer une nouvelle approche de la conjecture de Valette.We study property RD in terms of decay of matrix coefficients for unitary representations. We focus our attention on unitary representations arising from action of Lie groups and discrete groups of isometries of a CAT(-1) space on their appropriate boundary. We use some techn...
This is the proceedings of the 2nd Japanese-German Symposium on Infinite Dimensional Harmonic Analys...
Abstract. Let G be a connected real semisimple Lie group with nite center, and K a maximal compact s...
Dans cette thèse, nous étudions d'abord la notion de discrépance, qui mesure le taux de convergence ...
International audienceWe prove a von Neumann-type ergodic theorem for averages of unitary operators ...
Abstract. We present a new proof of the Poisson integral formula for harmonic functions using the me...
AbstractLet G be a free group with r generators, 1 < r < ∞. All the eigenfunctions of an operator on...
Let G be a free group with r generators, 1 < r < 1e. All the eigenfunctions of an operator on G whi...
Les groupes modulaires de surfaces fermées à points masqués jouent un rôle important comme prototype...
AbstractIn this paper we determine explicit models for the unitary representations which occur discr...
We find the complete branching law for the restriction of certain unitary representations of O(1, n+...
Let G be a group acting faithfully on a homogeneous tree of order p + 1, p > 1. Let K\ub0 be the spa...
AbstractWe give a complete and explicit realization of the unitary irreducible representations of an...
Abstract: We give a new construction of semi¯nite factor repre-sentations of the di®eomorphism group...
AbstractIt is known that the problem of classifying the irreducible unitary representations of a lin...
AbstractWe prove that if G is a compact Lie group, with irreducible unitary representations Dγ of de...
This is the proceedings of the 2nd Japanese-German Symposium on Infinite Dimensional Harmonic Analys...
Abstract. Let G be a connected real semisimple Lie group with nite center, and K a maximal compact s...
Dans cette thèse, nous étudions d'abord la notion de discrépance, qui mesure le taux de convergence ...
International audienceWe prove a von Neumann-type ergodic theorem for averages of unitary operators ...
Abstract. We present a new proof of the Poisson integral formula for harmonic functions using the me...
AbstractLet G be a free group with r generators, 1 < r < ∞. All the eigenfunctions of an operator on...
Let G be a free group with r generators, 1 < r < 1e. All the eigenfunctions of an operator on G whi...
Les groupes modulaires de surfaces fermées à points masqués jouent un rôle important comme prototype...
AbstractIn this paper we determine explicit models for the unitary representations which occur discr...
We find the complete branching law for the restriction of certain unitary representations of O(1, n+...
Let G be a group acting faithfully on a homogeneous tree of order p + 1, p > 1. Let K\ub0 be the spa...
AbstractWe give a complete and explicit realization of the unitary irreducible representations of an...
Abstract: We give a new construction of semi¯nite factor repre-sentations of the di®eomorphism group...
AbstractIt is known that the problem of classifying the irreducible unitary representations of a lin...
AbstractWe prove that if G is a compact Lie group, with irreducible unitary representations Dγ of de...
This is the proceedings of the 2nd Japanese-German Symposium on Infinite Dimensional Harmonic Analys...
Abstract. Let G be a connected real semisimple Lie group with nite center, and K a maximal compact s...
Dans cette thèse, nous étudions d'abord la notion de discrépance, qui mesure le taux de convergence ...