En optimisation les conditions d’optimalité jouent un rôle primordial pour détecter les solutions optimales et leur étude occupe une place significative dans la recherche actuelle. Afin d’exprimer adéquatement des conditions d’optimalité les chercheurs ont introduit diverses notions de dérivées généralisées non seulement pour des fonctions non lisses, mais aussi pour des fonctions à valeurs ensemblistes, dites applications multivoques ou multifonctions. Cette thèse porte sur l’application des deux nouveaux concepts de dérivées généralisées: les ensembles variationnels de Khanh-Tuan et les approximations de Jourani-Thibault, aux problèmes d’optimisation multiobjectif et aux problèmes d’équilibre vectoriel. L’enjeu principal est d’obtenir des...
Until now, no book addressed convexity, monotonicity, and variational inequalities together. General...
AbstractWe investigate two classes of generalized nonsmooth semi-infinite optimization problems in t...
This paper concerns new subdifferential necessary conditions for local optimal solutions to an impor...
En optimisation les conditions d optimalité jouent un rôle primordial pour détecter les solutions op...
The results of the thesis are concerned with optimality conditions in vector optimization and the un...
In this paper second-order necessary optimality conditions for nonsmooth vector optimization proble...
In this paper we introduce a notion of generalized derivative for nonsmooth vector functions in orde...
This book aims to give an introduction to generalized derivative concepts useful in deriving necessa...
Abstract. In this paper we study multiobjective optimization problems with equilib-rium constraints ...
In this paper we study set-valued optimization problems with equilibrium constraints (SOPEOs) descri...
Convex optimization, nonsmooth analysis, nonsmooth optimization, set-valued maps, variational analys...
summary:In this paper we study set-valued optimization problems with equilibrium constraints (SOPEC...
Focussing on optimization problems involving multivalued mappings in constraints or as the objective...
The paper concerns optimization and equilibrium problems with the so-called equilibrium constraints ...
In this paper we study multiobjective optimization problems with equilibrium constraints (MOECs) des...
Until now, no book addressed convexity, monotonicity, and variational inequalities together. General...
AbstractWe investigate two classes of generalized nonsmooth semi-infinite optimization problems in t...
This paper concerns new subdifferential necessary conditions for local optimal solutions to an impor...
En optimisation les conditions d optimalité jouent un rôle primordial pour détecter les solutions op...
The results of the thesis are concerned with optimality conditions in vector optimization and the un...
In this paper second-order necessary optimality conditions for nonsmooth vector optimization proble...
In this paper we introduce a notion of generalized derivative for nonsmooth vector functions in orde...
This book aims to give an introduction to generalized derivative concepts useful in deriving necessa...
Abstract. In this paper we study multiobjective optimization problems with equilib-rium constraints ...
In this paper we study set-valued optimization problems with equilibrium constraints (SOPEOs) descri...
Convex optimization, nonsmooth analysis, nonsmooth optimization, set-valued maps, variational analys...
summary:In this paper we study set-valued optimization problems with equilibrium constraints (SOPEC...
Focussing on optimization problems involving multivalued mappings in constraints or as the objective...
The paper concerns optimization and equilibrium problems with the so-called equilibrium constraints ...
In this paper we study multiobjective optimization problems with equilibrium constraints (MOECs) des...
Until now, no book addressed convexity, monotonicity, and variational inequalities together. General...
AbstractWe investigate two classes of generalized nonsmooth semi-infinite optimization problems in t...
This paper concerns new subdifferential necessary conditions for local optimal solutions to an impor...