All cubic Galois extensions of rational numbers are described by canonical minimal polynomials, which can be computed using a "sieving" algorithm
P(論文)We determine all absolute Galois fields included in pure extension number fields.departmental b...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
All cubic Galois extensions of rational numbers are described by canonical minimal polynomials, whi...
AbstractWe study Morton's characterization of cubic Galois extensions F/K by a generic polynomial de...
Galois Theory, a wonderful part of mathematics with historical roots date back to the solution of cu...
An extension L/K of skew fields is called a left polynomialextension with polynomial generator Q if ...
Abstract. This paper presents an investigative account of arbitrary cu-bic function fields. We prese...
AbstractWe produce a description of Galois extensions with Galois group Q8, QC, or QQ, suitable for ...
We determine all absolute Galois fields included in pure extension number fields
This thesis deals with counting relative cubic extensions. In the first chapter we describe a joint ...
This thesis deals with counting relative cubic extensions. In the first chapter we describe a joint ...
RésuméWe generalize the notion of a Galois extension by that of a Galois parallelogram; a Galois ext...
Galois theory is a description of the structure of field extensions. The main part of this work has ...
AbstractGiven a number field k and a quadratic extension K2, we give an explicit asymptotic formula ...
P(論文)We determine all absolute Galois fields included in pure extension number fields.departmental b...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
All cubic Galois extensions of rational numbers are described by canonical minimal polynomials, whi...
AbstractWe study Morton's characterization of cubic Galois extensions F/K by a generic polynomial de...
Galois Theory, a wonderful part of mathematics with historical roots date back to the solution of cu...
An extension L/K of skew fields is called a left polynomialextension with polynomial generator Q if ...
Abstract. This paper presents an investigative account of arbitrary cu-bic function fields. We prese...
AbstractWe produce a description of Galois extensions with Galois group Q8, QC, or QQ, suitable for ...
We determine all absolute Galois fields included in pure extension number fields
This thesis deals with counting relative cubic extensions. In the first chapter we describe a joint ...
This thesis deals with counting relative cubic extensions. In the first chapter we describe a joint ...
RésuméWe generalize the notion of a Galois extension by that of a Galois parallelogram; a Galois ext...
Galois theory is a description of the structure of field extensions. The main part of this work has ...
AbstractGiven a number field k and a quadratic extension K2, we give an explicit asymptotic formula ...
P(論文)We determine all absolute Galois fields included in pure extension number fields.departmental b...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...