AbstractGiven a number field k and a quadratic extension K2, we give an explicit asymptotic formula for the number of isomorphism classes of cubic extensions of k whose Galois closure contains K2 as quadratic subextension, ordered by the norm of their relative discriminant ideal. The main tool is Kummer theory. We also study in detail the error term of the asymptotics and show that it is O(Xα), for an explicit α<1
The goal of this thesis is to determine the asymptotic behaviour of the number of quadratic extensio...
International audienceLet k be a quadratic field. We give an explicit formula for the Dirichlet seri...
We give an upper bound on the number of extensions of a fixed number field of prescribed degree and ...
Given a number field $k$ and a quadratic extension $K_2$, we give an explicit asymptotic formula for...
This thesis deals with counting relative cubic extensions. In the first chapter we describe a joint ...
This thesis deals with counting relative cubic extensions. In the first chapter we describe a joint ...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
AbstractGiven a number field k and a quadratic extension K2, we give an explicit asymptotic formula ...
International audienceLet k be an imaginary quadratic number field (with class number 1). We describ...
We give asymptotic formulas for the number of biquadratic extensions of $ \mathbb{Q}$ that admit a q...
We give asymptotic formulas for the number of biquadratic extensions of ℚ that admit a quadratic ext...
The goal of this thesis is to determine the asymptotic behaviour of the number of quadratic extensio...
International audienceLet k be a quadratic field. We give an explicit formula for the Dirichlet seri...
We give an upper bound on the number of extensions of a fixed number field of prescribed degree and ...
Given a number field $k$ and a quadratic extension $K_2$, we give an explicit asymptotic formula for...
This thesis deals with counting relative cubic extensions. In the first chapter we describe a joint ...
This thesis deals with counting relative cubic extensions. In the first chapter we describe a joint ...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
Cette thèse traite du comptage d'extensions cubiques relatives. Dans le premier chapitre on traite u...
AbstractGiven a number field k and a quadratic extension K2, we give an explicit asymptotic formula ...
International audienceLet k be an imaginary quadratic number field (with class number 1). We describ...
We give asymptotic formulas for the number of biquadratic extensions of $ \mathbb{Q}$ that admit a q...
We give asymptotic formulas for the number of biquadratic extensions of ℚ that admit a quadratic ext...
The goal of this thesis is to determine the asymptotic behaviour of the number of quadratic extensio...
International audienceLet k be a quadratic field. We give an explicit formula for the Dirichlet seri...
We give an upper bound on the number of extensions of a fixed number field of prescribed degree and ...