In this paper we investigate the connection between infinite permutation monoids and bimorphism monoids of first-order structures. Taking our lead from the study of automorphism groups of structures as infinite permutation groups and the more recent developments in the field of homomorphism-homogeneous structures, we establish a series of results that underline this connection. Of particular interest is the idea of MB-homogeneity; a relational structure M is MB-homogeneous if every monomorphism between finite substructures of M extends to a bimorphism of M. The results in question include a characterisation of closed permutation monoids, a Fraisse-like theorem for MB-homogeneous structures, and the construction of 2ℵ0 pairwise non-isomorphi...