Oxide nanoceramics combine the enhanced radiation tolerance of nanocrystalline materials with the chemical inertness of oxides, and are promising materials for highly corrosive and intense radiation environments. In this work, nanocrystalline Al 2 O 3 thin films are irradiated at 600 °C with either 12 MeV Au 5+ +18 MeV W 8+ or 4 MeV Ni 2+ ions. The radiation damage exposure exceeds 450 displacements per atom. A comprehensive analysis of the irradiated samples is accomplished by X-Ray Diffractometry (XRD), Transmission Electron Microscopy (TEM) and Scanning-TEM (STEM). Results are compared in an effort to establish correlations between the irradiation spectrum and the response of this class of materials to radiation environments. The results...