An important result in tilting theory states that a class of modules over a ring is a tilting class if and only if it is the Ext-orthogonal class to a set of compact modules of bounded projective dimension. Moreover, cotilting classes are precisely the resolving and definable subcategories of the module category whose Ext-orthogonal class has bounded injective dimension. In this article, we prove a derived counterpart of the statements above in the context of silting theory. Silting and cosilting complexes in the derived category of a ring generalise tilting and cotilting modules. They give rise to subcategories of the derived category, called silting and cosilting classes, which are part of both a t-structure and a co-t-structure. We chara...