Data uncertainty due to spatial gaps and heterogeneity is a fundamental problem in conservation and environmental planning. Thus, investigation of issues related to data uncertainty contributes to more efficient conservation plans. We evaluated the uncertainty of data related to forest diversity descriptors using a diffusionbased cartogram approach that visually displays how data information change in function with respect to degree of uncertainty. We used ground vegetation data for 3093 plots collected as part of the BioSoil project through the ICP Forests Level I network and stored in the LI-BioDiv database. For each plot, we assigned an uncertainty value based on the survey season and the mean monthly temperature for the survey period. T...