International audienceDiffusion tensor imaging (DTI) is known to suffer from long acquisition time, which greatly limits its practical and clinical use. Undersampling of k-space data provides an effective way to reduce the amount of data to acquire while maintaining image quality. Radial undersampling is one of the most popular non-Cartesian k-space sampling schemes, since it has relatively lower sensitivity to motion than Cartesian trajectories, and artifacts from linear reconstruction are more noise-like. Therefore, radial imaging is a promising strategy of undersampling to accelerate acquisitions. The purpose of this study is to investigate various radial sampling schemes as well as reconstructions using compressed sensing (CS). In parti...