We provide model reduction formulas for open quantum systems consisting of a target component which weakly interacts with a strongly dissipative environment. The time-scale separation between the uncoupled dynamics and the interaction allows to employ tools from center manifold theory and geometric singular perturbation theory to eliminate the variables associated to the environment (adiabatic elimination) with high-order accuracy. An important specificity is to preserve the quantum structure: reduced dynamics in (positive) Lindblad form and coordinate mappings in Kraus form. We provide formulas of the reduced dynamics. The main contributions of this paper are (i) to show how the decomposition of the environment into K components enables it...