In this work, the neutron capture capabilities of two naturally occurring isotopes, gadolinium-157 (157Gd) and boron-10 (10B), were investigated for use as neutron detecting diodes. The appeal of using 157Gd and 10B is due to their large thermal neutron absorption cross sections: gadolinium (on average ∼46,000 barns) and boron-10 (∼3800 barns). Boron carbide (B4C) films were grown on nickel, copper, silver, and aluminum substrates using plasma enhanced chemical vapor deposition (PECVD) techniques forming p-n junctions using various configurations of two isomers: closo-1,7-dicarbadodecaborane (metacarborane) or closo-1,7-phosphacaborane (phosphacarborane) for the n-type layers and closo-1,2-dicarbadodecaborane (orthocarborane) for the p-type...