La prima parte dell'articolo descrive l'antico problema dei numericongruenti e il suo collegamento con le propriet\ue0 del gruppo dei punti razionali di certe curve ellittiche. Si passa poi a spiegare come la modularit\ue0 delle curve ellittiche e la teoria dei punti di Heegner (due tecniche fondamentali nella teoria moderna, la prima delle quali \ue8 legata alla dimostrazione dell'Ultimo Teorema di Fermat da parte di Wiles e Taylor) abbiano permesso di dimostrare che certe classi infinite di numeri primi siano costituite da numeri congruenti. Infine, viene spiegato come la congettura di Birch e Swinnerton-Dyer (il piu' importante problema aperto nella teoria delle curve ellittiche) fornisca una caratterizzazione congetturale dei numeri con...
This paper explores the congruent number problem, which asks which rational numbers are areas of tri...
Number theory is an area of mathematics which is concerned with properties of the integers, and beca...
Dedicated to Professor Masatoshi Ikeda on the occasion of his 70th birthday We prove that all but ni...
Bu çalışmada çözümü üzerinde oldukça uzun zamandır uğraşıldığı halde henüz çözülememiş en eski sayıl...
The aim of this paper is to relate Congruent Numbers and Elliptic Curves. We describe an operation ...
Abstract. These are essentially the lecture notes from a section on congruent numbers and elliptic c...
This thesis is an exposition on the theory of elliptic curves and modular forms as applied to the Fe...
In this paper we explain the congruent number problem and its connection to elliptic curves. We begi...
For every integer N ≥ 1, consider the set K(N) of imaginary quadratic fields such that, for each K i...
An integer n is called congruent if it corresponds to the area of a right triangle with three ration...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
The modular degree and congruence number are two fundamental invariants of an elliptic curve over th...
A positive integer n is a congruent number if it is equal to the area of a right triangle with ratio...
Abstract. A natural number is called a congruent number if it is the area of a right triangle with r...
Lo scopo di questa tesi è introdurre in breve le prime proprietà delle curve modulari e delle forme ...
This paper explores the congruent number problem, which asks which rational numbers are areas of tri...
Number theory is an area of mathematics which is concerned with properties of the integers, and beca...
Dedicated to Professor Masatoshi Ikeda on the occasion of his 70th birthday We prove that all but ni...
Bu çalışmada çözümü üzerinde oldukça uzun zamandır uğraşıldığı halde henüz çözülememiş en eski sayıl...
The aim of this paper is to relate Congruent Numbers and Elliptic Curves. We describe an operation ...
Abstract. These are essentially the lecture notes from a section on congruent numbers and elliptic c...
This thesis is an exposition on the theory of elliptic curves and modular forms as applied to the Fe...
In this paper we explain the congruent number problem and its connection to elliptic curves. We begi...
For every integer N ≥ 1, consider the set K(N) of imaginary quadratic fields such that, for each K i...
An integer n is called congruent if it corresponds to the area of a right triangle with three ration...
We survey results and conjectures concerning the modularity of elliptic curves over number fields.Th...
The modular degree and congruence number are two fundamental invariants of an elliptic curve over th...
A positive integer n is a congruent number if it is equal to the area of a right triangle with ratio...
Abstract. A natural number is called a congruent number if it is the area of a right triangle with r...
Lo scopo di questa tesi è introdurre in breve le prime proprietà delle curve modulari e delle forme ...
This paper explores the congruent number problem, which asks which rational numbers are areas of tri...
Number theory is an area of mathematics which is concerned with properties of the integers, and beca...
Dedicated to Professor Masatoshi Ikeda on the occasion of his 70th birthday We prove that all but ni...