Lo scopo di questa tesi è introdurre in breve le prime proprietà delle curve modulari e delle forme modulari, per poi mostrarne alcune applicazioni archetipiche. Per farlo, dopo aver richiamato alcune nozioni utili nel primo capitolo, sviluppiamo, nel secondo capitolo, la teoria di base delle curve modulari compatte come superfici di Riemann, calcolandone il genere nel caso dei sottogruppi principali di congruenza. Dunque, nel terzo capitolo, dopo un estesa trattazione dell'esempio delle forme modulari rispetto al gruppo modulare, viene calcolata la dimensione degli spazi delle forme intere e delle forme cuspidali rispetto a un sottogruppo di indice finito del gruppo modulare. Questo capitolo si conclude con tre esempi di applicazione del...