This is an accepted manuscript of an article published by Taylor & Francis in Integral Transforms and Special Functions on 2018-09-28, available online: https://doi.org/10.1080/10652469.2018.1525369We consider the hypergeometric function 2F1(a, b; c; z) for z ∈ C \ [1,∞). For Ra ≥ 0, we derive a convergent expansion of 2F1(a, b; c; z) in terms of the function (1 − z)−a and of rational functions of z that is uniformly valid for z in any compact in C \ [1,∞). When a ∈ N, the expansion also contains a logarithmic term of the form log(1 − z). For Ra ≤ 0, we derive a convergent expansion of (1 − z)a 2F1(a, b; c; z) in terms of the function (1 − z)−a and of rational functions of z that is uniformly valid for z in any compact in C \ [1,∞) in the e...
The Gauss hypergeometric function 2F1(a, b, c; z) can be computed by using the power series in power...
The power series expansions of the hypergeometric functions p+1Fp (a,b1,…,bp;c1,…,cp;z) converge eit...
The power series expansions of the hypergeometric functions p+1Fp (a,b1,…,bp;c1,…,cp;z) converge eit...
This is an accepted manuscript of an article published by Taylor & Francis in Integral Transforms an...
We consider the confluent hypergeometric function M(a, b; z) for z ∈ C and Rb >Ra > 0, and the confl...
We consider the confluent hypergeometric function M(a, b; z) for z ∈ C and Rb >Ra > 0, and the confl...
AbstractWe consider the Gauss hypergeometric function F(a,b+1;c+2;z) for a,b,c∈C,c≠-2,-3-4,… and |ar...
AbstractWe obtain new and complete asymptotic expansions of the confluent hypergeometric functions M...
In this article, we study several properties of extended Gauss hypergeometric and extended confluent...
19 pages, no figures.-- MSC1991 codes: 33C05, 33C55, 31B15.MR#: MR1393128 (98b:33007)Zbl#: Zbl 0864....
19 pages, no figures.-- MSC1991 codes: 33C05, 33C55, 31B15.MR#: MR1393128 (98b:33007)Zbl#: Zbl 0864....
In this article, we study several properties of extended Gauss hypergeometric and extended confluent...
AbstractWe consider the asymptotic behavior of the Gauss hypergeometric function when several of the...
Esta es la versión no revisada del artículo: José L. López, Pedro Pagola, Ester Pérez Sinusía, New s...
ABSTRACT. The Gauss hypergeometric function 2F1(a, b, c; z) can be computed by using the power serie...
The Gauss hypergeometric function 2F1(a, b, c; z) can be computed by using the power series in power...
The power series expansions of the hypergeometric functions p+1Fp (a,b1,…,bp;c1,…,cp;z) converge eit...
The power series expansions of the hypergeometric functions p+1Fp (a,b1,…,bp;c1,…,cp;z) converge eit...
This is an accepted manuscript of an article published by Taylor & Francis in Integral Transforms an...
We consider the confluent hypergeometric function M(a, b; z) for z ∈ C and Rb >Ra > 0, and the confl...
We consider the confluent hypergeometric function M(a, b; z) for z ∈ C and Rb >Ra > 0, and the confl...
AbstractWe consider the Gauss hypergeometric function F(a,b+1;c+2;z) for a,b,c∈C,c≠-2,-3-4,… and |ar...
AbstractWe obtain new and complete asymptotic expansions of the confluent hypergeometric functions M...
In this article, we study several properties of extended Gauss hypergeometric and extended confluent...
19 pages, no figures.-- MSC1991 codes: 33C05, 33C55, 31B15.MR#: MR1393128 (98b:33007)Zbl#: Zbl 0864....
19 pages, no figures.-- MSC1991 codes: 33C05, 33C55, 31B15.MR#: MR1393128 (98b:33007)Zbl#: Zbl 0864....
In this article, we study several properties of extended Gauss hypergeometric and extended confluent...
AbstractWe consider the asymptotic behavior of the Gauss hypergeometric function when several of the...
Esta es la versión no revisada del artículo: José L. López, Pedro Pagola, Ester Pérez Sinusía, New s...
ABSTRACT. The Gauss hypergeometric function 2F1(a, b, c; z) can be computed by using the power serie...
The Gauss hypergeometric function 2F1(a, b, c; z) can be computed by using the power series in power...
The power series expansions of the hypergeometric functions p+1Fp (a,b1,…,bp;c1,…,cp;z) converge eit...
The power series expansions of the hypergeometric functions p+1Fp (a,b1,…,bp;c1,…,cp;z) converge eit...