The aim of this work is to generalize the results given by Domitrz, Janeczko and Zhitomirskii in [10]. In this article they classify in the symplectic manifold (R2, w) where w = dx1 Λ dx2 + · · · + dx2n-1 Λ dx2n is the symplectic form given by Darbouxs Theorem, all the set which are symplectomorphic to a fixed quasi homogeneous curve . To do this classification they defined the algebraic restrictions. We develop a new method called the method of exact algebraic restrictions and show that this classification is solved for the non quasi homogeneous case N = {(x1, x2) = x≥3 = 0} in the symplectic manifold (C2, w ), where f(x1, x2) = x41 + x52 + x21 x32.Este trabalho tem como objetivo generalizar os resultados feitos por Domi...