Magnetic interactions in nanostructured films are important topics for understanding micromagnetism. They play significant roles in recording media and magnetic random access memory (MRAM). Due to measurement sensitivity limitations, arrays of hundreds of elements must be fabricated to obtain a high enough signal-to-noise ratio. The results are often clouded by statistical variations such as dot shape, size, and spacing. Thus, more sensitive techniques are needed to probe magnetism on this scale. In this thesis, a high-resolution magnetic force microscope (MFM) and an ultra-sensitive microcantilever torque magnetometer (MTM) are developed to study the magnetic interactions in nanostructured films and patterned nanostructures. Higher resolut...