With a growing number of robots deployed in populated environments, the ability to detect and track humans, recognize their activities, attributes and social relations are key components for future service robots. In this article we will consider fundamentals towards these goals and present several results using 2D range data.We first propose a learning method to detect people in sensory data based on a set of boosted features. The method largely outperforms the state of the art that typically relies on hand-tuned classifiers. Then, we present a person tracking approach based on the detection and fusion of leg tracks. To deal with the frequent occlusion and self-occlusion of legs, we extend a Multi-Hypothesis Tracking (MHT) approach by the ...