V magistrskem delu obravnavamo izbrane vsebine s področja kombinatorične teorije iger. V uvodnih poglavjih predstavimo primere preprostih kombinatoričnih iger ter navedemo nekatere osnovne definicije in trditve, na katerih temelji teorija kombinatoričnih iger. Predstavimo dokaz Zermelovega izreka in podamo več primerov osnovnih strategij, ki jih igralca uporabljata pri igranju. Glavni poudarek je na igrah normalnega tipa, pri katerih zmaga tisti igralec, ki napravi zadnjo potezo. Ob tem obravnavamo pojme kot so: položaj in njegov tip, vsota položajev in ekvivalenca položajev, na katerih temelji kombinatorična teorija iger. V drugem delu predstavimo kombinatorično teorijo nepristranskih iger ob pomoči igre Nim in dokažemo Sprague-Grundyev...