An analytical attitude motion planning method is presented that exploits the heteroclinic connections of an optimal kinematic control problem. This class of motion, of hyperbolic type, supply a special case of analytically defined rotations that can be further optimised to select a suitable reference motion that minimises accumulated torque and the final orientation error amongst these motions. This analytical approach could be used to improve the overall performance of a spacecraft’s attitude dynamics and control system when used alongside current flight tested tracking controllers. The resulting algorithm only involves optimising a small number of parameters of standard functions and is simple to implement