© 2020 Elsevier Inc. In the case of a field of characteristic zero, we describe all operations (including non-additive ones) from a theory A⁎ obtained from Algebraic Cobordism Ω⁎ of M. Levine-F. Morel by change of coefficients to any oriented cohomology theory B⁎ (in the sense of Definition 2.1). We prove that such an operation can be reconstructed out of it's action on the products of projective spaces. This reduces the construction of operations to algebra and extends the additive case done in [24], as well as the topological one obtained by T. Kashiwabara - see [6]. The key new ingredients which permit us to treat the non-additive operations are: the use of poly-operations and the “Discrete Taylor expansion”. As an application we constru...